• 正在加载中...
  • 衰老

    衰老,乃是指机体各器官功能普遍的、逐渐降低的过程。衰老有两种不同的情况,一种是正常情况下出现的生理性衰老;另一种是疾病引起的病理性衰老。是一种自然规律。但是,当人们采用良好的生活习惯和保健措施,就可以有效地延缓衰老,提高生活质量。中医理论认为,人体的生长、发育、衰老与脏腑功能和经络气血的盛衰关?#24471;?#20999;。当机体气血不足,经络之气运行不畅,脏腑功能减退,阴阳失去平衡,均会导致和加快衰老,表现为精神不振、健忘、形寒肢冷、纳差少眠、腰膝无力、发脱齿摇、气短乏力,甚则面浮肿等。千百年来,人们一直在探索健康长寿的奥秘,充满对青春长驻、延年益寿的向往。

    编辑摘要

    基本信息 编辑信息模块

    中文名: 衰老 外文名: aging
    季节分布: 四季 传染病:
    疫苗预防:
    安徽11选5走势图

    目录

     释义/衰老 编辑

    基本信息


    词目:衰老[1]
    拼音:shuāi lǎo

    详细解释


    [old and feeble;decrepit;senile] 年老而精力、体质衰弱

    《东周列国志?#36820;?#19968;百六回:“臣闻:‘骐骥盛壮之?#20445;?#19968;日而驰千里,及其衰老,驽马先之。’今鞠太傅但知臣盛壮之?#20445;?#19981;知臣已衰老矣。”

    衰老的定义/衰老 编辑

    从生物学上讲,衰老是生物随着时间的推移,自发的必然过程,它是复杂的自然现象,表现为结构的退行性变和机能的衰退,适应性和抵抗力减退。在生理学上,把衰老看作是从受精卵开始一直进行到老年的个体发育史。从病理学上,衰老是应激和?#36864;穡?#25439;伤和感染,免疫?#20174;?#34928;退,营养失调,代谢?#20064;?#20197;及疏忽和滥用药物积累的结果。另外从社会学上看,衰老是个人对新?#36866;?#29289;失去兴趣,超脱现实,?#19981;?#24576;旧。

    衰老的概念/衰老 编辑

    衰老(senility)是一种自然规律,因此,我们不可能违背这个规律。但是,当人们采用良好的生活习惯和保健措施并适当地运动,就可以有效地延缓衰老,降低衰老相关疾病的发病?#21097;?#25552;高生活质量。
    就衰老理论和延缓衰老而言,中医药学具有深刻阐述和丰富?#23548;!?#32032;问·上古天真论》就详细论述了女子以七、男子以八为基数递进的生长、发育、衰老的肾气盛衰曲线,明确指出机体的生、长、壮、老、已,受肾中精气的调节,总结衰老的内因是“肾”起主导作用。老年期?#19981;?#20986;现肾气衰退的表现,如发齿脱落、耳鸣耳聋、腰酸腿软、夜尿频多等。


    研究比较/衰老 编辑

    衰老衰老
    无脊椎动物由于寿命短,在用以研究衰老?#20445;?#23454;验周期短,易于重复。无脊椎动物在外形上与脊椎动物差别虽很大,但在细胞水平上有许多共同点。有人比较了果蝇与小鼠细胞衰老的变化,发?#25351;?#31181;细胞器的改变十分相似。例如核凹陷、线粒体膨大、核糖体减少等等。如进一步分析到分子水平,则无脊椎动物或脊椎动物细胞内的许多生化过程基本一致。因此,轮虫线虫、果蝇、?#30691;?#31561;常被用作研究衰老的材料。用无脊椎功物与脊椎动物做比较研究,发现许多因素如遗传、生殖、温度、食物等与衰老有密切关系。

    遗传与衰老[1] 不同动物各有其特定的寿命极限。如蜉蝣成体只有一天寿命,而果蝇和?#30691;?#25104;体可有30多天寿命。一种隐杆线虫(Caenorhabditisbriggae)能活28天,另一种寄生线虫可活17年。?#20998;?#40857;虾最高寿命可达30年。哺乳动物的寿命差异也很大。小鼠和大鼠约3年,大象约70年,而人类可达110年。在人群调查中常见到长寿的?#26131;?#26377;长寿的后代。单合子双生儿寿命很接近,而双合子双生儿的寿命可能相差较大。这些都证明遗传对寿限起主导作用。

    人类女性寿命常比男性长,以往常归因于社会因素即女性承受生活压力较少。?#23548;?#19978;除?#22235;?#24615;工作、劳动消耗大,损伤机会多的外界因素外,性别也对寿命有影响。性别由性染色体决定,女性为XX型而男性为XY型,许多遗传病的基因位于X染色体上。在女性由于另一X染色体的掩盖可不表现出病态,但男性则不能掩盖而出现病态。遗传决定?#22235;信?#24615;别,也造成了寿命的差别。

    在动物界也有雌性动物比雄性动物寿命长的现象。雄蝇在17天时?#21171;?#29575;为50%,而雌蝇在32天?#21171;?#29575;才达50%;此外,一种黑蜘蛛雄性平均寿命为100天,而雌性为271天。一种大型水蚤雄性平均寿命为38天,而雌性平均寿命为44天人也是要抗衰老的 。

    与衰老有机体借生殖以保?#31181;?#32676;的?#26377;?#29983;殖的方式对机体的衰老有重要影响。一次生殖的有机体,生殖后很快即衰老,随之?#21171;?/a>。许多昆虫和极少数的脊椎动物如太平洋中的几种鲑鱼均属于一次生殖类型。多次生殖的有机体可以在生命过程中一再重复生殖,大多数的脊椎动物和寿命较长的昆虫均属多次生殖的类。

    许多昆虫具有两种明显不同的适应性颜色,一种为保护色,另一种为警戒色。具有保护色的动物在生?#31216;?#32467;束后不久?#27492;劳觶?#32780;有警戒色的昆虫生殖后生存期较长。

    脊椎动物的鲑鱼也是一次生殖型动物,在产卵后旋即衰老?#21171;觥?#26377;人曾用阉割方法阻止产卵,避免产卵后的退化变化,鱼的寿命即可延长数年,因此认为生殖器官的成熟即蕴藏着衰老的因素。产卵本身可引起内分泌的改变,但不是?#21171;?#30340;直接原因。小型啮齿动物如大鼠、小鼠、豚鼠等?#35789;?#27492;例。而大型动物如牛、马、象以及人类,生长期长,妊娠期较长,产?#26032;?#20302;,寿命较长。

    温度与衰老从比较老年学的角度看,许多冷血动物的代谢受外界温度的影响,在低温条件下能降低体温,寿命相对延长。

    整体水平老年人身高下降,脊柱弯曲,皮肤失去弹性,颜面皱褶增多,?#26893;科?#32932;,特别是脸、手等处,可见色素沉着,呈大小不等的褐色斑点,称作老年斑汗腺皮脂腺分泌减少使皮肤干燥,缺乏光泽。须发灰白,脱发甚至秃顶,眼睑下垂,角膜外周往往出现整环或半环白色?#38142;?#21483;做老年环(或老年弓),是脂质沉积所致。牙齿脱落,但时间迟早因人而异。在行为方面,老年人?#20174;?#36831;钝,步履缓慢,面部表情渐趋呆滞,记忆力减退,注意不集中,语言常喜重复。视力减退,趋于远视。听力也易退化。上述情况个体差异很大,如秃顶未必落齿,面皱者也可能精神焕发。

    衰老的实质与结果/衰老 编辑

    (1)衰老的实质是:身体各部分器官?#20302;?#30340;功能逐渐衰退的过程。
    (2)衰老的最终结果是?#21171;觥?#23427;是生命的终止。它的主要特征是心脏、肺、大脑停止活动,其中大脑停止活动是?#21171;?#30340;主要标志,即人?#21171;?#30340;标准是?#36816;劳觥?br /> [讨论]:根据平时的观察,举例?#24471;?#20154;衰老的表现有?#30007;?br /> ——如:皱纹的出现,驼?#24120;?#25284;拐杖,行动迟缓等。
    2、影响人衰老的因素有:生活环境、生活方?#20581;?#31934;神状态、遗传因素等。
    3、延缓衰老的措施有科学合理地生活、轻松愉快的心情、适当地进行文娱和体育活动等。

    变化依据/衰老 编辑

    衰老衰老
    ?#36235;老低?#39592;组织随年龄衰老而钙质渐减,骨质变脆,易骨折,创伤愈合也比年轻时缓慢。关节活动能力下降,脊柱变短,这是老年人变矮的一个原因。皮肤老年人真皮乳头变低,表皮变薄,真皮网状纤维减少,弹性纤维渐失弹性且易断裂,胶原纤维更新变慢,老纤维居多,胶原蛋白交联增加使胶原纤维网的弹性降低。皮肤松弛,真皮含水量降低,皮下脂肪减少,汗腺、皮脂腺萎缩,由于局部黑素细胞增生而出现老年斑。

    肌肉老年人肌重与体重之比下降。整个肌肉显得萎缩,这种衰老变化因功能不同而异。当然,运动单位的老年变化还不足以解释老年人的一?#24615;?#21160;?#20064;?#22240;为神经?#20302;?#19981;同水平上的复杂机理对运动都会产生影响。

    神经?#20302;?/strong>90岁时人?#28798;?#36739;20岁时减轻10~20%。造成减重的原因主要在于神经细胞丧失。这种丧失有区域的特异性,例如大脑不同区域细胞减少程度不同。从大体解剖上看,老年人后脑膜加厚,脑回缩小,沟、裂宽而深,脑室?#28949;?#22823;。在显微结构上可见神经细胞尼氏体减少,脂?#31181;食?#31215;。在功能上则见神经传导速度减慢,近期记忆比远期记忆减退得?#29616;兀?#29983;理睡眠时间缩短;感觉机能如温觉、触觉和振动感觉都下降,味觉阈升高,视听敏感度下降。?#20174;?#33021;力普遍降低,特别是在要求通过选择做出决定的情况下?#20174;?#26356;为迟缓

    心血管?#20302;?/strong>老年心脏体积增大。在心脏的传导?#20302;?#21487;见起搏细胞的数量减少,窦房结与结间束内纤维组织增加。在动脉方面,内膜也有不同程度的加厚,可因此而致小动脉管腔狭窄。冠状动脉?#31181;?#22312;30岁后就开始出现内膜的增厚,中膜日趋纤维化,有些平滑肌可能坏死,最突出的衰老变化为弹性纤维板层变。动脉血管变性,外周血管阻力增加以致动脉压升高。

    呼吸?#20302;?/strong>在形态方面老年人肋软骨可能钙化,驼背情况有所增加导致胸腔前后径扩大成为“桶状胸?#34180;?a class="innerlink" title="显微镜" href="http://www.071ny4o.tw/wiki/%E6%98%BE%E5%BE%AE%E9%95%9C">显微镜下可见?#38395;?#31649;与呼吸性细支气管扩大,使周围?#38395;?#23481;积减。消化?#20302;?#19968;般说来消化?#20302;?#24418;态上的衰老变化不?#28798;?#33853;齿与对牙齿的保护良否有关,未必为衰老特征。此外,65岁以上老人不同程度地出现夜尿尿急尿濒乃至失禁等现象。

    内分泌?#20302;?/strong>性腺的萎缩是内分泌?#20302;?#26368;明显的衰老变化。如女性45~50岁左右月经停止,雌激素分泌?#28798;?#19979;降,男性从50~90岁雄激素逐渐减少,性机能减退。

    相关原因/衰老 编辑

    衰老衰老
    由于各个器官本身的复?#26377;?#20197;及内分泌器官之间相互作用的复?#26377;裕?#32454;胞水平可以从体内细胞和离体细胞两方面来阐述。在体内表现衰老的细胞主要为固定分裂后细胞,此类细胞出生后不久即停止分裂,死后也不能补充,如神经细胞、心肌细胞等。机体衰老时此类细胞在结构与组成上都有程度不同的改变,如细胞数量减少(源于局部细胞?#20035;劳觶?a class="innerlink" title="线粒体嵴" href="http://www.071ny4o.tw/wiki/%E7%BA%BF%E7%B2%92%E4%BD%93%E5%B5%B4">线粒体嵴与基质减少、体积膨?#20572;?#29978;至破坏消失。神经细胞粗面内?#37322;?#22833;去典型构造,在光学显微镜下即见尼氏体减少。细胞核的衰老变化则表现为孚尔根氏染色阳性物质减弱,?#22235;?#20869;陷形成皱襞。比较突出的老年变化是脂?#31181;?#30340;堆积,其随年龄增加?#20035;?#24230;因不同细胞与不同动物而异,堆积对细胞的功能有何影响仍是个有争论的问题。

    离体细胞的衰老表现在随培养代龄增高而产生的胞内变化。自从1961年L.海弗利克等发现人胚肺二倍体成纤维细胞的培养寿限以来,对离体细胞的衰老已积累了相当资料。随着细胞增殖达到密布单层后即须分瓶传代,倘以1分为2计,则传代次数只有50±10次,是为细胞群体倍增的极限,也就是培养细胞的寿限。此数与供体年龄、种属有关。供体年老者其细胞培养的代数较来自年轻供体者少。种属寿限高的供体其细胞培养的代数也较来自短寿者多。培养到30~40代后细胞即出现荧光颗粒,?#35828;?#30333;粒的RNA减少,缺嵴的线粒体增多。这都属衰老变化。在生化方面也已测知不少参数的变化。  

    分子水平器宫与细胞的衰老终归与分子水平的衰老有关,首先就细胞外的分子来说,充塞于全身的胞外结缔组织及上皮下方的基底膜均有特异的衰老变化。结缔组织?#32531;?a class="innerlink" title="胶原" href="http://www.071ny4o.tw/wiki/%E8%83%B6%E5%8E%9F">胶原蛋白?#26263;?#24615;蛋白。随年龄增长胶原蛋白分子之间产生交联键。30~50岁为交联迅速增加的时期,随着交联的增多胶原纤维吸水性下降,失去韧性,趋于僵硬,不利于组织的活动。弹性蛋白为弹性纤维的主要成分,在衰老中?#19981;?#36827;行交联。纤维断裂、脆化,外观黄色加深。至于基底膜只知其在衰老时加厚,其主要成分也是胶原蛋白,次为糖蛋?#23376;?#30899;水化合物。但这些分子如何改变导致膜的加厚还不清楚。此外,作为胞外物质当然还有血液、淋巴。这些物质经常处于运行状态,且不断更新,很难定出衰老的指标

    其次就细胞内分子的衰老来说,有些不断更新的胞内分子,如代谢?#20174;?#20013;的酶,其实质性的衰老变化还很少见。但其更新速度——合成与降解速度——可能在衰老时减慢。其生物活性是升是降则因不同酶而异。另有一些合成后不再更新的分子,如细胞分裂时的脱氧核糖核酸(DNA)在合成后即不降解。有人认为DNA分子随年龄增长而分子量下降,可能由于断裂增加所致,核小体?#29616;?#22797;排列的DNA碱基对在老年比年轻时增多;DNA与组蛋白的结合增多,在染色质内组蛋?#23376;?#38750;组蛋白的比值上升等等。至于衰老个体细胞内DNA损伤修复能力如何,人们尚不甚了解,但用离体细胞的研究大多认为DNA修复能力随培养代龄增加而下降,且与培养细胞的供体寿命似成正相关,即长寿动物的细胞在培养中有?#32454;?#30340;修复能力

    除DNA外,细胞内的大分子如眼球晶体纤维中的晶体蛋白,随年龄增长而含量增加。人在50岁以前晶体的可溶性蛋白?#21152;?#21183;,50岁后可溶性蛋白下降而不溶性或难溶性蛋白及其分子量均随年老而增加,尤以晶体中心部为甚,表明早期合成的可溶性蛋?#33258;?#22686;龄中进行聚合形成分子量大的聚合体。人们对分子水平的衰老所知有限,研究结果也常互相矛盾,有待于在?#38469;?/a>改进的基础上深入探讨。

     

    有关学说/衰老 编辑

    衰老抗衰水果

    自19世纪末应用实验方法研究衰老以来,先后提出的学说不下20余种,有些学说已被否定(如大肠中毒说),近年来的学说可归纳为五类。

    程序衰老说认为动物种属最高寿限是由某种遗传程序规定的,机体衰老现象也是按这种程序先后表现出来的,即在同一种属内不同个体的寿限在一定程度上也由遗传程序决定,因此可通过育种建立有一定寿限的品系。密码子限制?#31561;?#20026;衰老时DNA控制的蛋?#23383;?#21512;成受到破坏,可能由于转移核糖核酸(tRNA)的功能受到干?#29275;?#20351;密码无法进行转译,干扰的来源在于tRNA合成酶的改变,或组蛋白对基因?#31181;?/a>。

    DNA修复缺陷说认为基因?#20035;?#20260;不能及时
    有效地修复,会导致衰老。根据实验得知哺乳类中长寿动物的DNA修复?#20302;?#30830;?#24403;?#30701;寿动物的DNA修复?#20302;?/a>更为有效。这也?#20174;?#20102;寿命的进化

    生物分子自然交联学说论证生物衰老的分子机制的基本论点可归纳如下:其一,各种生物分子不是一成不变的,而是随着时间推移按一定自然模式发生进行性自然交联。其二,进行性自然交联使生物分子缓慢联结,分子间键能不断增加,逐渐高分子化,溶解度和膨润能力逐渐降低和丧失,其表型特征是细胞和组织出现老态。其三,进行性自然交联导致基因的有序失活,使细胞按特定模式生长分化,使生物体表现出程序化和模式化生长、发育、衰老以?#20102;劳?#30340;动态变化历程。

    免疫机能退化说认为免疫机能退化是导致衰老的重要因素。如老年人T淋巴细胞数比年轻人少,B淋巴细胞制造抗体能力下降,胸腺激素分泌也减少,其综合效应便是使老年人对疾病的感染率上升,特别是自身抗体的产生引起各种自体免疫病,如类风湿关节炎红斑狼疮等,表明免疫识别功能的紊乱,且延长寿命,表明免疫学在衰老研究中也是一个不容忽视的领域。

    神经内分泌学说认为激发各种生理功能的信息在衰老中有重要作用。信息来源不外内分泌与神经,早在19世纪就有一种理论?#24247;?#34928;老源于性激素的缺乏,性腺移植成为风靡一时的复壮手术。其实衰老未必源于激素的缺乏,而可能是各种激素的平衡失调所致,维持激素平衡有赖于神经内分泌的反馈机理,衰老个体对反馈的敏感性下降,有人认为反馈的中心在下丘脑,这里接受反馈信息,然后转为激素?#20174;Γ?#35302;发机体的生长、成熟和衰老。因此认为在下丘脑有所?#20581;?#34928;老钟?#20445;?#23454;验证明给老年性周期停止的雌鼠注射刺激下丘脑神经分泌的化学物质——左旋多巴则可?#25351;?a class="innerlink" title="生殖" href="http://www.071ny4o.tw/wiki/%E7%94%9F%E6%AE%96">生殖周期,?#20174;?#20102;老年下丘脑神经递?#35782;?#33590;?#24433;?#30340;缺陷。还有一种见解认为一种激素对另一种激素的功能可以通过未知方式进行阻断,例如有人从切除垂体使老年大鼠部分地复壮推测垂体有某种激素可干扰体细胞对甲状腺素的利用。复壮是源于这?#25351;?#25200;的解除。但迄今还不知垂体是否确有这类“?#21171;?#28608;素?#34180;?br />
    除上述学?#20302;猓?#36824;有一些正在酝酿的新学说,如根据生物膜在衰老中的作用以及从寿命进化的角度探索衰老的基因定位的学说。这些学说各自?#24247;?#20102;衰老的一个方面,?#23548;?/a>上都提出了一些推测。衰老机理十?#25351;?#26434;,可能不是?#24247;?#19968;的学说可以全面解释的。

    理论学说/衰老 编辑

    衰老衰老
    探索衰老发生的机理既是一个古老的问题,又是一个崭新的科研领域,在医学漫长的历史发展过程中,有人认为总共提出过数百个衰老的假说。祖国医学在抗衰老方面积累了丰富的经验,提出了“阴阳失调说?#34180;ⅰ?#33039;腑虚衰说?#34180;ⅰ?#31934;气神亏耗学说”等等,渗透着对自然界宏观的认识。国外的古代医学家和哲学家也从不同角度解释衰老,提出温热学说、熵学说、磨损学说、自家中毒学说等,对于人们认识衰老起到积极的作用。但因历史条件与科学水平的限制,这些学说有很大的局限性。

    (一)中医的精气亏耗学说

    中国中医认为精气虚衰导致机体衰老。《素问、金匮真?#26376;邸?/a>有记载:?#33018;?#31934;者,身之本?#30149;!?a class="innerlink" title="《灵枢·本神》" href="http://www.071ny4o.tw/wiki/%E3%80%8A%E7%81%B5%E6%9E%A2%C2%B7%E6%9C%AC%E7%A5%9E%E3%80%8B">《灵枢·本神》篇记载:“故生之来谓之精”《灵枢·平人绝古》篇记载:“故神者,水谷之精气?#30149;?a class="innerlink" title="朱丹溪" href="http://www.071ny4o.tw/wiki/%E6%9C%B1%E4%B8%B9%E6%BA%AA">朱丹溪在《格致余论》中列举了老人各种衰老征象,认为原因在于精血俱耗。宋·陈直认为老人气血渐衰,真阳气少,精血耗竭,神气浮弱。

    (二)自由基学说

    衰老的自由基学说是DenhamHarman在1956年提出的,认为衰老过程中的退行性变化是由于细胞正常代谢过程中产生的自由基的有害作用造成的。生物体的衰老过程是机体的组织细胞不断产生的自由基积累结果,自由基可以引起DNA损伤从而导致突变,诱发肿瘤形成。自由基是正常代谢的中间产物,其?#20174;?#33021;力很强,可使细胞中的多种物质发生氧化,损害生物膜。还能够使蛋?#23383;?/a>、核酸等大分子交联,影响其正常功能。

    (三)生物钟学说

    又称为遗传程序学说,该学?#31561;?#20026;衰老是生命周期中已经?#25165;?#22909;的程序,它只不过是整个生长与分化过程中的一个方面,每一物种都有一份遗传上的“时间计划?#20445;?#21363;靠生物钟或类似的机制按照在大自然进化中生存的利害得失发生。特定的遗传信息?#35789;?a class="innerlink" title="激活" href="http://www.071ny4o.tw/wiki/%E6%BF%80%E6%B4%BB">激活退变过程,退变过程逐渐展开,最终导致衰老和?#21171;觥?br />

    (?#27169;?#34928;老的免疫学说

    衰老的免疫学说可以分为两种观点:第一,免疫功能的衰老是造成机体衰老的原因?#22351;?#20108;,自身免疫学说,认为与自身抗体有关的自身免疫在导致衰老的过程中起着决定性的作用。衰老并非是细胞?#21171;?#21644;脱落的被动过程,而是最为积极地自身破坏过程。

    (五)内分泌学说

    内分泌?#20302;?#20027;要通过激素来调节动物的生长发育与衰老过程。老化过程中,内分泌功能的改变主要包括:①靶细胞受体减少且?#20174;?#24615;减退;②激素降解率减低,使得血液中该激素浓度相应升高,通过反馈机制导致该激素分泌减少;③酶合成的神经内分泌调节功能减退。还有人提出,丘?#28304;?#20307;轴的功能衰退可以影响其它内分泌腺的功能。上述变化都可能加速衰老过程。

    (六)交联学说

    该学说由Bjorksten于1963年提出的,后经Verzar加以发展。其主要论点是:机体中蛋?#23383;?/a>,核酸等大分子可以通过?#24067;?#20132;叉结合,形成巨大分子。这些巨大分子难以酶解,堆积在细胞内,干扰细胞的正常功能。这种交联?#20174;?#21487;发生于细胞核DNA上,也可以发生在细胞外的蛋白胶原纤维中。  

    (七)差误成灾学说

    差误成灾学说是由Orgel明确提出的,认为在DNA复制,转录和翻译中发生误差,这种误差可以不断扩大,造成细胞衰老、?#21171;觥?#36825;样的差错经过每一次信息传递都扩大一些,形成恶性循环,使细胞内积累许多差错分子造成灾难,细胞正常功能不能发挥,致使细胞衰老、?#21171;觥?#23545;于这种假说,已有大量的研究和报道,各抒己见,褒贬不一。

    (八)基因调节学说

    (细胞分裂速度逐渐减慢最终停止说)
    基因调节学说解释衰老的两个重要特征:生物体对环境的适应能力逐渐减退;寿命有种的特征。该学?#31561;?#20026;,衰老是由于在生物体分化生长过程中某些基因发生了有?#25215;?/a>的激活和阻遏:负责分化生长期的基因其产物刺激负责生?#31216;?#30340;基因,而生?#31216;?#30340;某些基因产物转而阻遏分化生长所需的某些基因。连续生殖又可使某些因子耗尽引起某些基因关闭,最终导致功能减退;物种的发育期、生?#31216;?#21450;衰老期的长短取决于被?#25215;?#22320;激活和阻遏的若干套特殊的基因,这些时期的?#20013;?#26102;间在一定限度内可以改变,并可受内在因素及一些外在因素如营养等影响,于是形成了同一物种不同个体间寿命不尽相同

    (九)剩余信息学说

    Medvedev是该学说的主要发起人。在发育成熟的体细胞中,DNA分子中所含遗传信息仅0.2-0.4%发挥作用,其余部分则被阻遏。一些确定的基因、作用因子以及DNA分子上的其它区域有着选择性的重复,表现为剩余的信息。一个基因的一个拷贝缺陷或失活,其余拷贝则被激活,直到最后一份拷贝用尽,这时由于缺失某些基因产物,细胞的正常功能就不能很好发挥,导致细胞衰老。Medvedev认为不同物种的寿命有可能是基因?#25215;?#37325;复程度的函数。长寿物种应该比短寿物种有更多的剩余信息。

    (十)衰老的免疫学说

    衰老的免疫学说可以分为两种观点:第一,免疫功能的衰老是造成机体衰老的原因?#22351;?#20108;,自身免疫学说,认为与自身抗体有关的自身免疫在导致衰老的过程中起着决定性的作用。衰老并非是细胞?#21171;?#21644;脱落的被动过程,而是最为积极地自身破坏过程。

    十大原因/衰老 编辑

    衰老衰老
    1.慢性?#23383;?#38543;着年龄增长,人体器官发?#33258;?#26469;越多,如关节炎。?#30142;?#30340;不只是关节,还有脑细胞、动脉壁、心瓣等。梗死和中风等也跟?#23383;?#26377;关。

    2.基因突变许多自然的和人为的因素能引起基因突变。随着年龄增长,细胞“处理”机制越来越不规律,从而引起基因恶性退化变质。

    3.细胞能量枯竭细胞的“供电站?#34180;?#32447;粒体需要一定的化学物质来保证细胞的活力和清除细胞的毒素。如果这个“充电”过程减弱,心梗、肌肉组织衰退、慢性疲劳、神经性疾病等就会发展。

    4.激素失衡人们身体里的亿万个细胞正是有了激素,才能准?#36820;?#21516;步工作。随着衰老,这种平衡变得不规则,从而引起各种疾病,包括?#38047;?#30151;、骨质疏松、冠状动脉?#19981;?/p>

    5.钙化作用通过细胞膜里的特殊管道,钙离子进出细胞。身体衰老,钙离子进出的通道遭到破坏,导致脑细胞、心瓣、血管壁里积聚过多的钙。

    6.脂肪酸不平衡为了产生能量,身体需要脂肪酸。年龄越来越大,必需脂肪酸的酶开始不足,结果,心律不齐、关节退化、容易疲劳、皮肤发干等开始出现。

    7.非消化酶不平衡细胞内经常进行多种同步的酶?#20174;Α?#24180;复一年,渐渐失去平衡,首先发生在脑部和肝脏。这是造成神经学疾病或中毒性组织损伤的原因。

    8.消化酶不足?#35748;?/a>渐渐枯竭,无法产生足够的酶,结果,消化?#20302;?#24930;性机能不全。

    9.血液循环衰竭多年之后,毛细血管的渗透性遭到破坏,包括大脑、眼睛和皮肤。由此,引起大、小中风,视力减退,出现

    10.氧化应激?#20174;?#32473;任?#25991;?#40836;的人们带来不少麻烦的自由基给已过中年的人带来的麻烦更多。它影响许多生理过程的正常流向,从而加重身体,引起各种疾病。

    加速原因/衰老 编辑

    衰老衰老
    许多人意识到不良的生活习惯如吸烟和酗酒能导致加速衰老。
    1、糟糕的饮食油腻的、加工的或?#39548;?#39135;品和单糖类食品,正用化学添加剂和?#35789;?#33026;肪及通过剥夺身体必须的营养成分来给身体加压,进而加速你身体的衰老。一般来说,饮食内容应当包含各?#25351;?#26679;颜色(食品)和各种有机精益蛋?#23383;?#26469;源的平衡,混合型碳水化合物,全谷类,豆类,水果和蔬菜。许多研究表明水果和蔬菜表皮中各式各样的天然色素是强效抗氧化?#31890;?#37027;是保持健康、防癌和使身体免受环境毒素侵害的重要营养成份。避免摄入油腻食品,加工和?#39548;?a class="innerlink" title="食品" href="http://www.071ny4o.tw/wiki/%E9%A3%9F%E5%93%81">食品。保持最低的牛奶摄入量,因为大部分牛奶都含有大量的饱和脂肪。

    2、忧虑?#38047;?#21644;不快的人得心脏病的几率是正常人的两倍。有证据显示C型个性特征的人,?#20999;?#26377;忧郁、消沉和过分担心的人更容易得癌症。

    3、缺乏锻炼锻炼对健康的新陈代谢、恰当的能量循环和体内废物的排除是必不可少的。超重和缺乏运动是加速衰老和满身疾病的必然原因。心肺功能运动是加速新陈代谢、燃烧多余卡?#38450;?#21644;减肥的关键。快走、?#35762;?#26053;行、慢跑、游?#23613;?#33258;行车和爬楼梯—这么多保持健康方法的选择。

    4、压力忙碌生活的巨大副产品而且它导致人们的健康遭受极大损害。这时期(承受压力期间)人们身体的“生存方?#20581;?#26102;常变得兴奋。遭受压力?#20445;?#36523;体进入了“战斗或?#20248;堋?#27169;式,这种状态需要大量的能量。肾上腺素被?#30001;?#19978;腺释放出来,它告诉身体把储存的糖通过肝脏转化成葡萄糖,因为在假定的“战斗或?#20248;堋本?#26412;中身体的能量需求?#28798;?#22686;强了。更为?#29616;?#30340;是,所有这些压力会?#20013;?#28040;耗你身体的能量资源直到身体由于负荷过重而垮掉,这将导?#24459;?#19978;腺疲劳,神经失常或免疫?#20302;?#25925;障。

    5、缺少睡眠这是个无法回避的事实:成年人平均每个晚上需要7到8个小时的高质量睡眠来保持健康。记住只要3个晚上睡眠不足免疫?#20302;?#23601;平均降低60%的功效。没有每晚足够的“?#25351;词?#38388;?#20445;?#36523;体将每况愈下而精疲力竭,走向身体失衡和?#30142;?#30340;道路。

    保养方法/衰老 编辑

    衰老衰老
    1.食疗延缓衰老
    延缓衰老-龙眼首乌羹
    来源?#22909;?#38388;药膳方
    原料:龙眼肉20?#29275;?#21046;首乌15克,当归6克,红枣6个,冰糖50克。
    制作:1.将制首乌、当归去净杂质,烘干研成粉末?#32531;?#26531;去核,洗净,切成细粒;龙眼肉剁细。 2.?#36824;?#32622;中火上,掺入清水约700克,加入首乌、当归粉末,煮几开之后,下龙眼肉、红枣、冰糖熬成约300克的羹汤即成。
    特点:甜羹适口。
    ?#24471;鰨?#21046;首乌补肝肾,益精血,黑头发,悦颜色,久服益寿。当归补血和血;龙眼补精益髓,美颜色,润肌肤?#32531;?#26531;养脾气,平胃气,通九窍,助十二经,久服轻身延年。此成菜有美容颜、润肌肤之功效。女性常吃可葆青春长在

    2.适量运动延缓衰老
    “生命在于运动”运动是保持健康、延缓衰老的有效措施之一。因此,任何老年人,只要坚?#36136;?#37327;的体育运动,对健康和长寿都是有益的。但老年人参加体育运动要注意以下?#20613;?
    1、在运动前先到医院全面检查一下身体,了解体?#26159;?#20917;,以便加强医疗监护。
    2、循序渐进,运动量逐渐增加,掌握好?#35782;?#30340;运动量。专家认为,老人?#21051;?#22362;持30?#31181;?/a>的轻松运动,每周5次,运动后每?#31181;?#30340;心?#21097;?#21152;上自己的年龄数,不超过170,这就是最?#35782;?#30340;运动量。另外,在运动结束后5?#31181;?#20869;,感到心跳、呼吸基本?#25351;?#27491;常,全身舒?#26159;?#26080;疲劳感,这也?#24471;?#36816;动量是?#35782;?#30340;。
    3、选择合理的运动项目。慢跑、快走、游泳是耐力锻炼,可使心脏保持健康;太极拳跳舞、保健操等柔韧性锻炼,可活动肌肉、韧带及筋腱,防止关节僵?#24067;?#30140;痛?#29615;?#32982;老人最好做老年减肥健美操
    4、选择运动时间。锻炼时间选择在下午较为安全。
    5、?#31181;?#20197;恒,贵在坚持
    6、运动前须做好准备活动,激?#20197;?#21160;后不要突然停顿下来。最好慢走2?#31181;?#21518;再停下来休息。运动后也不要立即洗澡,至少要等5?#31181;?#21518;。洗澡时最好用?#20154;?#20197;保安全

    国际上开发的几种抗衰老药:益康胎盘多肽、生长因子IGF—1、胸腺肽等。另外,许多蔬菜和水果等食用品也对人体有保健和延长寿命的作用:茶叶、番?#36873;?#22855;异果(弥猴桃)、菠菜、龙眼肉、洋?#23567;?#32993;萝卜、苹果、生姜、牛奶、番薯(就是红薯、?#25509;螅?#20063;有叫地瓜的)、茄子、辣椒、桔子等。中药抗衰老:五味子、枸杞子、何首乌、黄芪、人参。要想长寿还要保持愉快的心情,?#21051;?#36827;行一定程度的脑力活动,睡眠充足,多运动(比如跑?#20581;?#25171;太极拳等)。

    中医针灸/衰老 编辑

    衰老中医针灸

    1.基本治疗
    治法祛湿化?#25285;?#36890;经活络。以手足阳明经足太阴经穴为主。主穴曲池,天枢,阴陵泉,丰隆,太冲
    配穴腹部肥胖者,加归来下脘中极;便秘者,加支沟天枢
    操作毫针泻法。嘱患者适当控制饮?#24120;?#21152;强锻炼。
    方义取曲池、天枢以疏导阳明经气,通调肠?#28014;?#38452;陵泉、丰隆清热利湿,化痰消脂太冲疏肝而调理气机。
    2.其他治疗
    耳针法选?#28014;?a class="innerlink" title="内分泌" href="http://www.071ny4o.tw/wiki/%E5%86%85%E5%88%86%E6%B3%8C">内分泌、三焦、脾。毫针刺,或用王不留行籽贴压,?#30475;?#39184;前3?#31181;?#21387;耳穴3—5?#31181;櫻?#26377;灼热感为宜。

    控制饮食/衰老 编辑

    衰老衰老
    ?#26412;?#22823;学衰老研究中心常务副主任张宗玉说,人们一日三餐中的糖、脂类与蛋?#23383;剩?#22312;细胞线粒体内经生物氧化产生能量(ATP)供机体一切生理与生化活动的能量需要。糖、脂类、蛋?#23383;?#20195;谢在细胞内被氧化的过程中不断消耗从空气中吸收的氧,进入细胞内的氧90%在线粒体中用于生物氧化,但仍有1%到4%的氧同时被转化为氧自由基,这种东西最易损伤线粒体DNA,从而产生线粒体DNA片段的缺失,影响线粒体的功能,无法对人体供应营养。氧自由基具有毒性,对细胞衰老有深刻影响,对细胞的长期存活带来不利影响,氧自由基引起DNA损伤是影响衰老进程的重要因素

    张宗玉介绍说,相当一部分人都知道?#35782;?a class="innerlink" title="节食" href="http://www.071ny4o.tw/wiki/%E8%8A%82%E9%A3%9F">节食可以延长寿命,但道理何在。她说,人吃得多,线粒体负荷就多,氧自由基就会大量产生,对线粒体功能影响就大。如果限?#24120;?#20154;体的氧负荷降低,可减少氧自由基的产生,就可延缓衰老进程,延长寿命。

    女人衰老症状表现/衰老 编辑


    脊椎


    35岁以后,脊椎、腰椎开始退?#20581;?#22899;性?#37322;?#30340;S形身?#27169;?#21487;不是?#30340;?#30340;脊椎要变成S型。脊椎出现了侧弯,就 会带来很多疾病。女性与男性相比,发生脊椎侧弯的人群是男性的3倍,脊椎侧弯的女性特别脆弱,轻轻搬一次东西很可能就导致需要一个月平躺在?#30149;?#33034;椎疾病还可能影响到心脑血管疾病和心理健康。
    调查发现,长期跷二郎腿容易引起弯腰驼?#24120;?#36896;成腰椎与胸椎压力分布不均,长此以往,势必压迫脊椎神经,而且翘二郎?#28982;?#20250;妨碍腿部血液循环,造成腿部静脉曲张。

    牙齿


    如果你发现牙齿变得比以前更长了,这不是因为它们在增长,而是因为牙龈在萎缩,甚至一部分?#26639;?#24050;经暴露在外。门牙的平均长度一般在10~12毫米,随着牙龈萎缩导致的?#26639;?#26292;露,这个数字会增长到15~17毫?#20303;?#36523;体机能的逐渐衰老造成了皮肤失去弹性,牙龈开始松弛。
    最好的保护方法是使你的牙龈远离细菌的侵害?#22909;刻?#20445;证刷牙两次,同时用?#32769;?#37197;合清理。细菌带来的牙龈病变会加剧牙龈萎缩的情况,同样过度用力刷牙?#19981;?#24102;走牙龈组织,也要尽量避免。

    鼻子 

    鼻子是有?#35272;?#26102;限的,鼻子最美的时间是20-40岁。40岁以后,你?#21051;?#26089;上起床就会发现鼻孔下垂,鼻型改变,鼻梁?#37319;?#26377;下陷,甚?#31890;?#20320;能感觉到鼻子比以前大了很多,所以,45岁之后,你不能再?#31561;魏位?#35805;了!这是因为,鼻子像其他软组织(皮肤,脂肪和肌肉)一样萎缩。随着时间的增长,?#36235;酪不?#33806;缩,没有了?#36235;?#30340;支持,这些软组织就少了可供支撑的基架。

    头发


    正常状况下,每个人?#21051;?#37117;会脱落一些毛发。但是如果发现头发稀疏变薄,并且已经退过了发际线,或者毛发脱落变薄的地方越来越大,这就?#24471;?#20320;要重视这个问题了。35岁以后,相同比例的男性和女性都会渐渐遭受头发稀疏的困扰。原因同样与雌性激素的分泌有关,一直以来雌性激素被视为是毛发生长的保护伞。[5]

    肠道


    你没有想到,这个?#20504;?#38271;达5~6米的?#19968;?#31455;然是你衰老最开始的地?#20581;?#21307;学专家指出,人体90%的疾病与肠道不洁有关,1天不排便等于吸3包烟。这是因为肠道是我们身体里重要的消化吸?#38556;低常?#33829;养从这里吸收,毒素、垃圾从这里排出。
    肠道衰老带来的最直接的问题就是便便,肠道中最高能积存约6.5公斤?#20035;?#20415;,大量?#20035;?#20415;堵塞在肠?#35272;錚?#20351;得毒素、垃圾无法及时排出甚至被肠道当做“营养”重新吸收,于是导致肤色晦暗、斑痘丛生、口臭熏人,不仅如此,由于腹部堆积了太多的废?#20572;?#23567;“腰?#26412;?#30452;接升级变成小“腹”婆。

    科学研究/衰老 编辑

    人类为何衰老或长寿:探访细胞"端粒"的世界

    人为什么会衰老?“细胞衰老了”是最常见的答案之一。细胞为什么会衰老呢?回答这个问题,就必须提到今年的?#24403;?#23572;奖了。三位美国科学家伊丽莎白(ElisabethBlackburn)、卡萝尔(CarolGreider)和杰克(JackSzostak)分享了今年的?#24403;?#23572;医学和生物学?#20445;?#20182;们的贡?#23376;?#19968;个?#23567;?#31471;粒”的小东西有关。

    末端颗粒?#27492;?#31616;单

    在图中所有染色体的顶端,都可以看到有一个高亮的?#35828;悖?#37027;就是“端粒?#34180;?/strong>

    人都是由数以兆记的微小细胞组成的。标准的细胞好像一个桃子,剖开桃子见桃核———“细胞核?#20445;?#37324;边塞了几十条染色体,每条都是由一根很长的DNA链?#20504;?#32780;成。这根链便记录?#22235;?#25152;有的遗传信息。细胞核里的染色体是可以通过显微镜观察到的,如同一根根粗面条。你绝绝绝大多数细胞里都有23对这样的粗面条……

    那么“端粒”在哪儿呢?在每一根“面条”的每一个顶端上都有一个显眼的小颗粒。它们标记了染色体面条两个末端。它叫Telomere,意思是染色体末端(telos)的部分(meros)。“端粒”这个概念在七八十年前就诞生了。那时人们观察到,如果染色体失去?#22235;?#31471;这一坨(knob),就容易粘在一起,或者干脆折掉。至于端粒为什么能起到这种效果,就暂时不得而知了。

    此处快进五十年,新科?#21040;?#24471;主伊丽莎白还是一名初出茅庐的助理教授,整天和一些名?#23567;?#22235;膜虫”的小动物打?#22351;馈?#36825;位伊丽莎白教授把可怜?#20035;?#33180;虫?#38450;茫?#21462;出染色体,把其末端的碱基全破译出来。她发现这些末端不记录任?#25105;?#20256;信息。这就是“端粒”的全部秘密?

    鞋带,和它两头的结

    伊丽莎白教授偶然听到了同事杰克教授的抱?#26775;骸?#25105;把最喜爱的DNA塞给酵母,结果不一会儿就被它们给弄光了……”伊丽莎白“头脑风暴”了一下:“不如把我新发现的末?#20284;婀中?#21015;安在DNA两端试试?”这么一试,DNA竟然保住了。

    一条DNA两端的特殊重复序列———端粒,可以守护整条DNA!如果你早明白这个道理30年,你也可以?#38376;当?#23572;?#34180;?#27809;明白?#30475;?#20010;比方,染色体和端粒的关系,就好比是一根鞋带和它两头的小塑料套。如果没有小塑料套,由几股绳编起来的鞋带儿就会散开;如果没有端粒,你的染色体就劈叉儿、磨秃。

    鞋带头?#31995;乃?#26009;套必须非常牢固,染色体尽头的端粒也得制作精良。在许多低等细胞中,端粒只是被一些蛋白抱住,鞋带?#26041;?#20165;被胶水粘了起来。而在高等一点的生物中,端粒会给DNA链的末梢打个“结?#34180;?

    现在,第三位获奖者卡萝尔要上场了。当?#20445;?#22905;还只是伊丽莎白教授的学生。卡萝尔和老师一样,也把四膜虫?#38450;?#20102;……要的不是DNA,而是“榨取液?#34180;?

    卡萝尔向榨取液里加?#35828;鉊NA引子,结果榨取液就自动在引子后边续了端粒。此前,科学家已经知?#32769;?#32990;中DNA不是凭空合成的,它需要先有一个模板,再照样合成。但卡萝尔实验中的端粒,在只有引子而无模板的情况下生出来了。师徒二人继而在细胞榨取液里确定了专门负责加端粒的蛋白,起名为“端粒?#28014;薄?

    谁记录你的年龄?

    你会向化妆品和整容术求助,以其“改变自己的年龄”吗?#31354;?#26159;徒劳的,因为年龄?#27426;?#31890;写进?#22235;?#30340;每个细胞里!

    最早发现这个秘密的是苏联生物学家AlexeyOlovnikov。在一个莫斯科郊外的晚上,那时伊丽莎白才本科毕业,卡萝尔才上小学,四膜虫在水中畅游,A.O.教授则在等地铁。他发现或许因为司机不够专业,地铁的末节车厢恨不得?#30142;?#22312;隧?#35272;錚?#22914;果车启动时末节车厢脱?#24120;?#26681;本不会有人注意到车厢丢了!A.O.想:细胞分裂就像列?#20302;?#31449;;染色体末端不携带遗传信息,好像没有乘客的末节车厢,?#30475;?#20572;站可以丢掉一点;但丢的次数多了,总有一天细胞会受不了的———好像把中间有乘客的车厢也给丢了。他提出一个假说:有多少“末节车厢”可以丢,决定了车能停?#32771;复危?#32780;染色体有多长的末端可以丢,最?#31449;?#23450;细胞能分裂多少次。

    1986年,人们第一?#20301;?#24471;了实验的间接论证:科学家发现,精子细胞里的端粒比成人体细胞的端粒都长。结合卡萝尔在两年前圣诞前夜的发现,一个推测就此产生:在端粒很长的生殖细胞里,端粒酶必定非常活?#23613;?

    证明端粒长短和人的衰老相关的实验结果频频传来。科学家总结了人细胞中染色体端粒长短随着年龄的变化趋势。平均来说,人年龄越大,端粒越短。今天的科学家已经能够通过测量端粒长短,来判断人的年龄。

    看到这里,你是不是在犯?#27490;荊?#32454;胞里明明有端粒酶,为什么新生成一个精细胞,染色体的端粒就毫无差池地保持,而生成一个体细胞,端粒却会缩短?让我们再来谈谈癌症?#20254;?

    躲避癌症,需要衰老

    这就是在端粒和端粒酶的发现过程中起了重要作用的“四膜虫?#34180;?#22270;片左侧的大虫子,就是四膜虫的显微照片,而右边则是绘制?#20035;?#33180;虫的食物———大肠杆菌。这就是在端粒和端粒酶的发现过程中起了重要作用的“四膜虫?#34180;?#22270;片左侧的大虫子,就是四膜虫的显微照片,而右边则是绘制?#20035;?#33180;虫的食物———大肠杆菌。

    癌症是“不受控制的细胞增殖?#34180;?#23427;逐渐漫布全身,最后将整个躯体蚕食。这些坏蛋凭什么能无数次分裂增?#24120;?#26080;数次?#31354;就3担看?#26696;是,在这些细胞中,端粒酶特别努力工作,把端粒加得很长,为细胞分裂增?#31243;?#20379;了充足的丢失余地。端粒酶在卵巢?#21644;?/a>中一贯活跃;而在体细胞中几乎销声匿迹。但在可怕的癌变区域中,70%-100%的细胞中都有端粒酶活性。

    需要?#24471;?#30340;是,体细胞中也有例外,比如制造新血和新骨头的造血干细胞和成骨干细胞,遇到外敌被活化的淋巴细胞,长头发用的毛囊细胞,更换皮肤用的上皮细胞,还有其他活跃分子……它们要随时戒备,因此端粒酶活跃,端粒茁壮成长。

    人越老,积累的错误越多,也就越容?#29366;?#21040;阈值,以致不可收拾。但癌症的性状却正好和自然的“衰老”相反。正因为这种奇妙的矛盾关系,现在许多人都看好这样一个特别乌托邦的假说:端粒随着细胞分裂次数的增多变得越来越短,很可能是生物演化出的一种预防癌症的机制———为了长生不老而冒得癌症的危险,不值得,宁可短点儿。这种保守的防卫措施是要付出代价的,那就是细胞自己的衰老和死去。看,生物在这个时候显得很不贪婪嘛。

    鸡生蛋还是蛋生鸡?

    最近这些年,若干实验室进行了若干?#33251;疲?#23613;管其中有些的取样量并不能令人满意,不过趋势已经慢慢显现,比如吸烟、肥胖、胆固醇高、血脂高、心肺功能不好、甚至常吃成品肉的人,端粒较短;闲暇时光常常用来锻炼的人,端粒较长。伊丽莎白近年的研究还发现,?#20999;?#38656;要常年?#23637;?#37325;病儿,承受巨大心理压力的妈妈,端粒就短;整天关注自己体重,并致力于节食的人,端粒?#19981;?#32553;短……

    想想上边的例子,最基本的问题仍然存疑:端粒变短,究竟是衰老的指标(衰老顺便导致端粒变短),还是衰老的诱因(端粒在细胞分裂中不可避免地变短导致了衰老)。更添乱的是,自然界中还有一种奇怪的鸟,它们活得越久,体细胞的端粒就越长———这个事实打了坚称“端粒短导致衰老”的人一记响亮的耳光。

    别说大自然中的衰老,就算在实验室中,问题也很明显。科学家们成天嚷嚷着克隆
    克隆,可他们甚至没法控制自己究竟能克隆出一个“老头羊?#34987;?#26159;“少儿牛?#34180;?#33879;名的多莉羊是?#22351;?#38665;的克隆羊,它明明同万物生灵一样,由一颗胚胎发育而来,却有着出乎人们意料的短端粒。后来的一头克隆牛就?#20197;?#22810;了,它的细胞明明来自一头老牛,却不知怎么就激活了端粒酶,结果长成了一头端粒较长的年轻牛。[2]

    相关词条/衰老 编辑

    心因性精神?#20064;?/a>老花眼共鸣器官?#35748;?/a>
    妊娠?#20174;?/a>双胞胎丹凤眼秃顶


     

    参考资料/衰老 编辑

    1、http://www.qm120.com/yinshi/yssl/nxmr/2008102870621.htm
    2、http://cm.h863.com/?action-viewthread-c-detail.content-tid-13949
    3、http://news.xinhuanet.com/health/2005-04/22/content_2862950.htm

    测试方法/衰老 编辑

    GB/T16422.2 塑料实验?#22812;?#28304;暴露试验方法第2部分:氙弧灯

    GB/T3511-2008 硫化橡胶或?#20154;?#24615;橡?#32791;秃?#24615;

    GB/T1865-2009 色漆和清漆 人工气候老化和人工辐射曝露(滤过的氙弧辐射)

    GB/T16422.3 -1997塑料实验?#22812;?#28304;暴露试验方法第3部分:荧光紫外灯

    GB/T3511-2008 硫化橡胶或?#20154;?#24615;橡?#32791;秃?#24615;

    GB/T14522-2008 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法 荧光紫外灯

    GB/T7141-2008 塑料热老化试验方法

    GB/T3681-2000 塑料大气暴露试验方法

    GB/T3511-2008 硫化橡胶或?#20154;?#24615;橡?#32791;秃?#24615;

    GB/T9276-1996 涂层自然气候暴露试验方法

    相关文献

    互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与?#22836;?#32852;系,我们将按照法律之相关规定及时进行处理。未经许可,禁止?#26691;低?#31449;等复制、抓取本站内容;合理使用者,请注明来源于www.071ny4o.tw。

    登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专?#31561;现?#26234;愿者?#20302;ā?/p> 互动百科用户登录注册

    此词条还可添加  信息模块

    WIKI热度

    1. 编辑次数:31次 历史版本
    2. 参与编辑人数:19
    3. 最近更新时间:2014-04-26 20:30:17

    互动百科

    扫码下载APP